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This paper deals with stochastic spectral methods for uncertainty propagation and quanti-
fication in nonlinear hyperbolic systems of conservation laws. We consider problems with
parametric uncertainty in initial conditions and model coefficients, whose solutions exhibit
discontinuities in the spatial as well as in the stochastic variables. The stochastic spectral
method relies on multi-resolution schemes where the stochastic domain is discretized
using tensor-product stochastic elements supporting local polynomial bases. A Galerkin
projection is used to derive a system of deterministic equations for the stochastic modes
of the solution. Hyperbolicity of the resulting Galerkin system is analyzed. A finite volume
scheme with a Roe-type solver is used for discretization of the spatial and time variables.
An original technique is introduced for the fast evaluation of approximate upwind matri-
ces, which is particularly well adapted to local polynomial bases. Efficiency and robustness
of the overall method are assessed on the Burgers and Euler equations with shocks.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In numerical simulation, accounting for uncertainties in input quantities (such as model parameters, initial and boundary
conditions, and geometry) is an important issue, especially in risk analysis, safety, and design. Assuming that these input
quantities can be parametrized by random variables with known distribution functions, the question is to quantify the
resulting uncertainty in the numerical solution. Uncertainty quantification (UQ) provides for instance numerical error bars
that make the comparison with experimental observations easier and therefore facilitate the evaluation of physical models.
Moreover, they enable to identify the uncertain parameters that should be measured or controlled with more accuracy be-
cause they have the most significant impact on the solution. Furthermore, they allow for the assessment of the reliability
level that can be attached to computations.

Stochastic spectral methods provide effective tools for UQ. Such methods decompose random quantities on suitable
approximation bases. Their main interest is that they provide a complete probabilistic description of the uncertain solution.
A classical choice for the stochastic basis is the set of generalized Polynomial Chaos (gPC) spanned by random polynomials,
continuous in the stochastic domain and truncated to some degree. Polynomial Chaos (PC) methods were originally intro-
duced by Ghanem and Spanos [11] following the Wiener Chaos theory [37] in which random processes are expanded in a
Hermite polynomial basis of Gaussian random variables. The theory was then extended to the case of more general random
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processes that can be expanded on a basis of orthogonal polynomials associated with the chosen random variables; see
among others [39]. Then, two types of resolution methods are available. The first ones are called non-intrusive and are based
on the use of the numerical code solving the deterministic model (without uncertainty) as a black box to construct the spec-
tral expansion of the solution. Two approaches can be used, either the probabilistic collocation method [25,38,2,9,30,8],
which consists in approximating the stochastic solution by a polynomial interpolation, or the non-intrusive projection meth-
od [32,14,22], which is based on the evaluation of the stochastic modes of the solution by numerical integration. For the two
cases, the issue is to find the set of interpolation or integration points that provide the most accurate stochastic approxima-
tion. The second type of resolution methods are stochastic Galerkin methods based on a Galerkin projection of the model
equations yielding a reformulated deterministic problem for the stochastic modes of the solution. Such methods are called
intrusive because of the need to rewrite to some extent the simulation code. Their advantage is to rely on the weak form of
the problem and thereby on a firmer theoretical background. Therefore, they are in our opinion better suited for mathemat-
ical analysis and improvements such as refinement and adaptation. In particular, stochastic Galerkin methods applied to
elliptic and parabolic problems are relatively well understood. Such methods have been successfully applied in many do-
mains (see [11] and references therein). Regarding viscous flow models, previous works have dealt with the incompressible
Navier–Stokes equations [21,22], low Mach number flows [20], and electrochemical microfluidic applications [5]. Recent re-
views on uncertain fluid flows can be found in [15,27,28].

The application of stochastic spectral methods to hyperbolic systems of conservation laws (in particular inviscid flows)
poses additional challenges. The main difficulty is that solutions can exhibit discontinuities (in the spatial domain) in finite
time due to the development of shock waves and contact discontinuities (in the spatial variables). Although these disconti-
nuities concern the spatial variables, their propagation speed can be affected by uncertainty, thereby leading to discontinu-
ities in the stochastic variables as well. As a result, bases of continuous polynomials in the stochastic domain become
inappropriate, because of aliasing errors [3] and Gibbs-type phenomena [17]. To overcome this issue, Multi-Resolution Anal-
ysis (MRA) methods using stochastic finite elements [4], multi-element gPC (ME-gPC) [36], and multi-wavelet expansions
[17–19] can be used to make the spectral representation more local by decomposing the stochastic domain into different
regions or different scales. Another difficulty originates from the nonlinearities in the physical fluxes of the stochastic hyper-
bolic system raising the issue of computing such fluxes in the context of Galerkin projections. Indeed, all mathematical oper-
ations must be applied to the stochastic expansions that represent the variables. One attractive approach is to use pseudo-
spectral techniques [6].

Polynomial collocation methods have already been applied by Mathelin et al. [26] to the Euler equations but in the con-
tinuous case. Other non-intrusive approaches include that of Abgrall [1] based on ENO-like reconstructions for the convec-
tion, Burgers, and Euler equations, and that of Lin et al. [24] based on multi-element probabilistic collocation methods for
supersonic flows past a wedge with random roughness. Concerning intrusive methods, most of the approaches found in
the literature are in fact pseudo-intrusive because the fluxes in the Galerkin system are computed in a non-intrusive way
by quadrature methods, as for instance in Ge et al. [10] for the shallow-water equations and in Poette et al. [31] for the Bur-
gers and Euler equations. One nice feature of this latter approach is that the polynomial expansion is carried on suitable
entropic variables and not on the original conservative variables, so that it can be proven that the Galerkin projection leads
to a hyperbolic system; however the numerical algorithm requires a minimization procedure to recover the solution expan-
sion that can be time consuming.

To our knowledge, very few intrusive stochastic spectral methods have been investigated for uncertain hyperbolic prob-
lems. The scalar wave equation has been treated with gPC methods by Gottlieb and Xiu [13]. The case of nonlinear hyperbolic
systems is obviously more difficult. Supersonic flows past a wedge with random inflow fluctuations or random wedge oscil-
lations around its apex have been studied using ME-gPC methods by Lin et al. [23]. In the context of intrusive methods, a
crucial question is the design of a suitable scheme to approximate in the spatial and time domains the evolution problem
associated with the Galerkin projection. Typically, one would like to use a finite volume (FV) scheme with appropriate
upwinding. For instance, Lin et al. [23] considered upwinding using the mean values (in the stochastic domain) of the eigen-
vectors of the Galerkin Jacobian matrix. As mentioned in [23], this approach is only justified in the case of relatively small
fluctuations of the random quantities. The present paper improves on this point both theoretically and numerically, by using
full spectral information on the eigenvectors of the Galerkin Jacobian matrix and by proposing a cost-effective method to
approximate the absolute value of this matrix.

The purpose of the present work is to investigate intrusive methods for nonlinear stochastic hyperbolic systems. To this
end we discretize as in [36] the stochastic domain using tensor-product stochastic elements supporting local polynomial
bases. A stochastic Galerkin projection is then used to derive the Galerkin system, that is, the set of deterministic equations
coupling the stochastic modes of the solution on the selected basis. The nonlinear fluxes in the Galerkin system are com-
puted in a pseudo-spectral way with the tools described in [6]. A FV method with a Roe-type solver is used to approximate
the Galerkin system in the spatial and time domains. At the theoretical level, our main result is that the Galerkin system is
proven to be hyperbolic in two specific cases, namely when the original stochastic problem has a symmetric Jacobian (the
main application being scalar conservation laws) and when its eigenvectors are independent of the uncertainty (the main
application being linear hyperbolic systems with uncertainty only on initial or boundary conditions). Moreover, in the gen-
eral case, we identify an approximate Galerkin Jacobian matrix which is shown to be R-diagonalizable and whose eigen-
values can be easily determined from those of the original stochastic problem. These eigenvalues are solely used as data
in the determination of a (low-degree) fitting polynomial that can be applied to the actual Galerkin Jacobian matrix to
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compute an upwinding matrix for the Roe solver. This new methodology for computing approximate upwind matrices is par-
ticularly well adapted to the stochastic discretization since the computation of the fitting polynomial can be localized to each
stochastic element, thereby making the procedure more robust and efficient.

The paper is organized as follows. In Section 2, the stochastic hyperbolic framework is presented, including the stochastic
approximation spaces and the stochastic Galerkin projection. The hyperbolicity of the Galerkin system is investigated in Sec-
tion 3. Numerical methods are described in Section 4. Finally, simulation results are presented in Section 5.

We adopt the following notation: lower case symbols represent deterministic quantities, whereas upper case symbols
represent stochastic quantities.

2. Galerkin projection of stochastic hyperbolic systems

2.1. Probabilistic framework and parametric uncertainty

We are interested in uncertainty propagation and quantification in nonlinear hyperbolic problems. The uncertainty is
treated in a probabilistic framework. We rely on an abstract probability space P ¼ ðH;R;dlÞ, where H is the set of random
events, R the associated r-algebra, and dl the probability measure. For any random variable H(h) defined on P, the expec-
tation of H is
E½H� ¼
Z

H
HðhÞdlðhÞ: ð1Þ
We denote by L2(H,dl) the space of second-order random variables on P. We assume hereafter that all random quantities
are second-order.

In view of stochastic discretization, we introduce a finite set of N random variables n(h) :¼ {n1(h), . . . ,nN(h)} defined on P
with known distributions. These random variables will be used to parametrize the uncertain coefficients or initial conditions
of the hyperbolic problem. For simplicity, we consider ni(h) as real-valued independent identically distributed random vari-
ables, such that the joined density function of n(h) factorizes, namely
pnðyÞ ¼
YN
i¼1

pðyiÞ; ð2Þ
where p(yi) is the probability density function of ni(h). We further denote by N the range of n and by Pn the image probability
space, Pn :¼ ðN;BN; pnÞ, where BN is the Borel set of N. Similarly, L2(N,pn) is the space of second-order random variables de-
fined on the image space. The expectation operator in the image space is denoted using brackets and is related to the expec-
tation on P through the identity
E½H� ¼
Z

H
HðnðhÞÞdlðhÞ ¼

Z
N

HðyÞpnðyÞdy ¼: hHi: ð3Þ
2.2. Stochastic hyperbolic systems

We consider conservative systems of nonlinear hyperbolic PDEs. The uncertainty can result from a variability of the initial
condition and/or of some coefficients in the model. For simplicity, we focus on one-dimensional spatial domains. The exten-
sion to higher spatial dimension is straightforward at least concerning the stochastic aspects. We seek for U(x, t,n) solving
almost surely the following conservative system
@
@t Uðx; t; nÞ þ @

@x FðUðx; t; nÞ; nÞ ¼ 0;

Uðx; t ¼ 0; nÞ ¼ U0ðx; nÞ:

(
ð4Þ
Let X � R be the bounded spatial domain over which the problem is posed and let AU � Rm, m P 1, be the set of admissible
values for the solutions which we assume independent of the random event. For instance, for the Burgers equation, we can
take AU ¼ R, whereas for the Euler equations, AU is the set of states with positive density and pressure. Then,
U : ðx; t; nÞ 2 X� ½0; T� � N#Uðx; t; nÞ 2 AU � L2ðN; pnÞ denotes the uncertain state vector of conservative variables parame-
trized by n, U0(x,n) is a parametrization by n of the uncertain initial condition, and F : ðU; nÞ 2 AU � L2ðN; pnÞ�
N#FðU; nÞ 2 Rm � L2ðN; pnÞ is the uncertain flux function, involving some random coefficients parametrized again by n. More-
over, since the domain X is bounded, appropriate boundary conditions have to be enforced at the boundary @X; they will be
specified in Section 5 when presenting the test cases.

For smooth U, the system (4) can also be written in the non-conservative form
@
@t Uðx; t; nÞ þ rUFðUðx; t; nÞ; nÞ @

@x Uðx; t; nÞ ¼ 0;

Uðx; t ¼ 0; nÞ ¼ U0ðx; nÞ:

(
ð5Þ
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This stochastic system is assumed to be hyperbolic in the sense that the stochastic Jacobian matrix rUF 2 Rm;m � L2ðN; pnÞ is
R-diagonalizable almost surely, that is, for almost every n 2 N, there exist m eigenvalues K1(�;n), . . . ,Km(�;n) and m associ-
ated eigenvectors W1(�;n), . . . ,Wm(�;n) forming a complete basis of Rm, such that
rUFð�; nÞ ¼ P�1ð�; nÞDð�; nÞPð�; nÞ ð6Þ
with
Dð�; nÞ ¼ diagðKkð�; nÞÞk¼1;...;m and Pð�; nÞ ¼ ðW1ð�; nÞ � � � Wmð�; nÞÞ: ð7Þ
The matrices D(�;n) and P(�;n) are in Rm;m � L2ðN; pnÞ. To alleviate the notation, the dependence of the eigenvalues and eigen-
vectors on U is omitted in the sequel.

2.3. Stochastic discretization

To approximate the solution in L2(N,pn), we need a stochastic discretization of the problem. This is obtained by consid-
ering an appropriate Hilbertian basis of random functionals in n spanning L2(N,pn),
L2ðN;pnÞ ¼ spanfW1ðnÞ;W2ðnÞ; . . .g; hWaWbi ¼ dab; ð8Þ
where dab denotes the Kronecker symbol. The discrete solution is sought in a finite dimensional subspace SP constructed by
truncating the Hilbertian basis:
SP ¼ spanfW1ðnÞ;W2ðnÞ; . . . ;WPðnÞg � L2ðN;pnÞ; dimðSPÞ ¼: P: ð9Þ
We assume for simplicity that n is a uniform random vector in [0,1]N (an isoprobabilistic transformation can be used to map
the original independent random variables to this random vector [18,19]). The image probability space is then
Pn :¼ ð½0;1�N;B½0;1�N ;1Þ, where B½0;1�N is the Borel set of [0,1]N.

We decompose the stochastic domain [0,1]N dyadically and approximate the stochastic solution by piecewise polynomial
functions. In addition to the number N of random variables ni in the parametrization, this approximation depends on the
resolution level Nr P 0 (controlling the minimal size of the Stochastic Elements (SE), that is, the discretization cells in the
stochastic domain) and on the expansion order No P 0 (controlling the degree of the piecewise polynomial approximation).
Let i = (i1, . . . , iN) 2 {1, . . . ,2Nr}N be a multi-index and let Ki ¼ fn 2 ½0;1�N;81 6 j 6 N;nj 2 ½2�Nrðij � 1Þ;2�Nrij�g be the associ-
ated stochastic element. Thus, we define SNo;Nr as the stochastic approximation space of piecewise polynomial functions
SNo;Nr :¼ ff : ½0;1�N ! R;8i 2 f1; . . . ;2NrgN
; f jKi

2 QN
No½n�g; ð10Þ
where Q
N
No½n� denotes the vector space of real polynomials in RN with degree 6No in each variable ni. The space SNo;Nr has

dimension
dimSNo;Nr ¼ ðNoþ 1ÞN2NNr ¼: PpPr ¼: P; ð11Þ
where Pp :¼ (No + 1)N is the dimension of the local polynomial basis on each stochastic element, and Pr :¼ 2NNr is the num-
ber of stochastic elements. The spaces SNo;Nr form a hierarchical family since SNo;Nr � SNo0 ;Nr for No 6 No0 and SNo;Nr � SNo;Nr0

for Nr 6 Nr0. It is also possible to work with smaller stochastic approximation spaces, for instance spanned by polynomials of
total degree 6No, that is, using sparse polynomial tensorization instead of full polynomial tensorization. The resulting
changes in the numerical method will be indicated whenever relevant.

Two kinds of basis can be considered. Firstly, SNo;Nr can be spanned by the hierarchical Multi-Wavelet (MW) system of
order No and resolution level Nr introduced in [18]. Alternatively, SNo;Nr can be spanned by local Legendre polynomial bases,
where each function of SNo;Nr is expanded in each stochastic element of size 2�Nr on a local fully tensorized basis with dimen-
sion (No + 1)N of Legendre polynomials. For convenience, Legendre polynomials are henceforth defined with respect to the
reference interval [0,1]. The case Nr = 0 corresponds to the classical continuous approximation (Wiener–Legendre expan-
sion), while the choice Nr > 0 and No = 0 leads to the Wiener–Haar expansion (piecewise constant approximation). In view
of adaptive algorithms, the MW basis provides a natural framework. The SE basis is more convenient for theoretical analysis
and implementation. Therefore, unless stated explicitly, we focus in this work on the SE basis, which we denote by
{Wa(n)}a=1,. . .,P. In practice, a is a double index, a = {ar,ap}, the first index (ar) referring to the stochastic element and the
second (ap) referring to the polynomial function within the stochastic element.

The approximate solution in SP :¼ SNo;Nr is expanded as a series in the form
Uðx; t; nÞ � UPðx; t; nÞ ¼
XP

a¼1

uaðx; tÞWaðnÞ: ð12Þ
The deterministic Rm-valued fields ua(x, t) are called the stochastic modes of the solution (in SPÞ. If UP(x, t,n) is known, then
ua = hWaUPi. The knowledge of the stochastic modes allows one to compute interesting statistic quantities, such as expecta-
tion, variance, higher moments, density functions, and cross-correlations, relying either on analytic expressions or on a sam-
pling of N.



J. Tryoen et al. / Journal of Computational Physics 229 (2010) 6485–6511 6489
2.4. The Galerkin system

The computation of the stochastic modes ua(x, t) is based on a weak interpretation, or Galerkin projection, of (4). Project-
ing (4) on the basis of SP and accounting for orthonormality, we obtain
@
@t uaðx; tÞ þ @

@x hWaFðUP; �Þi ¼ 0;8a ¼ 1; . . . ; P;

uaðx; t ¼ 0Þ ¼ hWaU0i;8a ¼ 1; . . . ; P:

(
ð13Þ
Eq. (13) shows that the ath stochastic mode of the approximate solution is governed by an equation that generally couples
all the stochastic modes in the term hWaF(UP; �)i. It is convenient to define the vectors of stochastic modes and fluxes
uðx; tÞ ¼

u1ðx; tÞ
..
.

uPðx; tÞ

0
BB@

1
CCA; f ðuðx; tÞÞ ¼

f1ðuÞ
..
.

fPðuÞ

0
BB@

1
CCA ð14Þ
with
faðuÞ :¼ hWaFðUP; �Þi; a ¼ 1; . . . ; P; and UP ¼
XP

b¼1

ubWbðnÞ: ð15Þ
The component vector u must belong to the admissible set Au � RmðPþ1Þ such that u 2 Au () UPðnÞ ¼
PP

a¼1uaWaðnÞ 2
AU � L2ðN; pnÞ. With obvious notation for u0, the deterministic Galerkin system takes the simple form
@
@t uðx; tÞ þ @

@x f ðuðx; tÞÞ ¼ 0;
uðx; t ¼ 0Þ ¼ u0ðxÞ:

�
ð16Þ
Thus, the problem on u has the same form as the original stochastic problem (4), except that the state vector is now of size
mP.

3. Hyperbolicity of the Galerkin system

Before detailing the construction of a numerical method to approximate the Galerkin system (16), we investigate the
hyperbolicity of this system. Introducing the Galerkin Jacobian matrix of order mP such that
ðruf ðuÞÞa;b¼1;...;P ¼ hrUFðUP; �ÞWaWbia;b¼1;...;P; ð17Þ
we aim at understanding whether this matrix is R-diagonalizable.
The advantage of using SE bases rather than MW bases for investigating the R-diagonalization of the Galerkin Jacobian

matrix ruf is that owing to the adopted index convention, this matrix has a diagonal block structure. Indeed, (ruf)ab = 0
whenever Supp(Wa) \ Supp(Wb) has zero measure. Consequently, ruf is diagonalizable if and only if each block in the diag-
onal is diagonalizable. Such blocks are of size mPp �mPp and correspond to a given stochastic element. The issue of the
hyperbolicity of the Galerkin system can then be studied for the case Nr = 0.

An interesting point is that the two different representations of ruf using the MW basis or the SE basis for the stochastic
discretization are equivalent in view of R-diagonalization. Indeed, let fwMW

a ðnÞga¼1;...;P denote the MW basis and let B 2 RP;P

denote the transition matrix between the two bases, such that WMW
a ðnÞ ¼

PP
c¼1BacWcðnÞ, for all a = 1, . . . ,P, that is,

ðBÞ16a;c6P ¼ hW
MW
a Wci. Let ruf MW 2 RmP;mP be the representation of the Galerkin Jacobian matrix using the MW basis. Then,

for all a,b = 1, . . . ,P,
ðruf MWÞab ¼ hrUFðUP; �ÞWMW
a WMW

b i ¼
X
c;d

hrUFðUP; �ÞBacWcBbdWdi ¼
X
c;d

Bacðruf ÞcdBbd ¼ ðBrufBTÞab: ð18Þ
Moreover, B is orthogonal owing to the orthonormality of the two bases, which implies that rufMW and ruf are similar and
therefore proves the equivalence of the two representations with respect to R-diagonalization.

3.1. Stochastic symmetric hyperbolic systems

Theorem 1. Consider either sparse or full polynomial tensorization for the stochastic space SNo;Nr. If the stochastic Jacobian matrix
rUF(�;n) is symmetric, then the Galerkin Jacobian matrix ruf is R-diagonalizable. In particular, the Galerkin projection of a scalar
conservation law always leads to a hyperbolic system.
Proof. If rUF(�;n) is symmetric, then the Galerkin matrix ruf defined by (17) is also symmetric and therefore R-
diagonalizable. h



6490 J. Tryoen et al. / Journal of Computational Physics 229 (2010) 6485–6511
3.2. Stochastic eigenvectors independent of the uncertainty

Theorem 2. Consider either sparse or full polynomial tensorization for the stochastic space SNo;Nr. If the eigenvectors of the
stochastic Jacobian matrixrUF(�;n) are independent of the uncertainty, then the Galerkin Jacobian matrixruf is R-diagonalizable.
Proof. If the eigenvectors of rUF(�;n) are independent of n, then the spectral decomposition (6) becomes
rUFð�; nÞ ¼ p�1
0 DðnÞp0 with p0 ¼ ðw1

0 � � � wm
0 Þ; ð19Þ
where w1
0; . . . ;wm

0 are independent of n. A generic element in ruf can be identified with the multi-index (ai,bj) with
i, j = 1, . . . ,m and a,b = 1, . . . ,P, in such a way that
ðruf ðuÞÞai;bj ¼ hðrUFðUP; �ÞÞijWaWbi ¼
X

k

hðp�1
0 ÞikK

kðp0ÞkjWaWbi ¼
X

k

ðp�1
0 ÞikhK

kWaWbiðp0Þkj

¼
X
k;k0

X
c;c0
fdacðp�1

0 Þikgfdkk0 hKkWcWc0 igfdc0bðp0Þk0 jg ¼
X
k;k0

X
c;c0
ðqÞai;ckðdÞck;c0k0 ðrÞc0k0 ;bj ¼ ðq d rÞai;bj; ð20Þ
where d is the block-diagonal matrix of size mP �mP such that
ðdÞck;c0k0 ¼ dkk0 hKkWcWc0 i; ð21Þ
and q and r are mP �mP matrices such that
ðqÞai;ck ¼ dacðp�1
0 Þik; ðrÞck;bj ¼ dcbðp0Þkj: ð22Þ
Each block of the diagonal of d is symmetric, and therefore R-diagonalizable so that d is R-diagonalizable. Besides,
ðqrÞai;bj ¼
X
c;k

ðqÞai;ckðrÞck;bj ¼
X
c;k

ðp�1
0 Þikdacdcbðp0Þkj ¼ dabdij; ð23Þ
which means that q = r�1. This concludes the proof. h
Remark. Theorem 2 provides another proof of the fact that the Galerkin system derived from a stochastic scalar conserva-
tion law is hyperbolic. Indeed, W(n) = 1 is the eigenvector of rUF 2 R� L2ðN; pnÞ. A relevant application of Theorem 2 is the
scalar wave equation with uncertain sound velocity. Theorem 2 can also be applied to linear hyperbolic systems with uncer-
tainty only on initial or boundary conditions.
3.3. An approximate Galerkin Jacobian matrix

In the most general case, the Galerkin Jacobian matrix ruf is not guaranteed to be R-diagonalizable. However, we can
identify an R-diagonalizable approximation of ruf obtained by quadrature, denoted by ruf , for which explicit expressions
of the eigenvalues can be derived. The main application of this result (see Section 4) is to use the spectrum ofruf to compute
a fitting polynomial that can then be applied to the Galerkin Jacobian matrix ruf to approximate its absolute value in the
context of upwind matrices for Roe-type solvers.

To study the R-diagonalization of ruf , we can assume that Nr = 0 since the extension to Nr P 1 is straightforward owing
to the block diagonal structure of the Galerkin Jacobian matrix. Moreover, it is sufficient to consider the one-dimensional
stochastic case (N = 1). In this case, we denote by {nc}c=0,. . .,No the set of P = No + 1 Gauss points in [0,1], i.e., the (No + 1) zer-
oes of the Legendre polynomial of degree (No + 1), and by {xc}c=0,. . .,No the associated quadrature weights. The extension to
N > 1 is straightforward, owing to the tensorized structure of the polynomial basis so that the multidimensional Gauss points
are simply obtained by tensorization of the one-dimensional Gauss points.

Theorem 3. Assume that the stochastic Jacobian matrix rUFð�; nÞ is defined at the (No + 1) Gauss points in [0,1]. Consider the
matrixruf obtained by approximating the coefficients of the Galerkin Jacobian matrixruf by the above Gauss quadrature, namely
ðruf ðuÞÞa;b¼0;...;No ¼
XNo

c¼0

xcrUFðUPðncÞ; ncÞWaðncÞWbðncÞ
 !

a;b¼0;...;No

: ð24Þ
Then, ruf is R-diagonalizable with eigenvalues {Kk(ng)}k=1,. . .,m,g=0,. . .,No, and eigenvectors fvk
ggk¼1;...;m;g¼0;...;No defined by
ðvk
gÞb¼0;...;No ¼ hV

k
gWbib¼0;...;No; ð25Þ
where Vk
gðnÞ 2 Rm � SP is the polynomial of degree 6No + 1 in n such that
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Vk
gðng0 Þ ¼ dgg0W

kðngÞ; g0 ¼ 0; . . . ;No: ð26Þ
Here, {Kk(n)}k=1,. . .,m and {Wk(n)}k=1,. . .,m are the eigenvalues and eigenvectors of the stochastic Jacobian matrixrUF(�;n) defined by
(7).
Proof. We observe that
PNo

g¼0Vk
gðnÞ is the interpolation polynomial of Wk(n) at the (No + 1) Gauss points. Since the order of

the quadrature is (2No + 1), for all VðnÞ 2 SP; hWbVi is exact for all b = 0, . . . ,No if evaluated using the quadrature. Hence, for
all b = 0, . . . ,No,
ðvk
gÞb ¼ hWbVk

gi ¼
XNo

c¼0

xcVk
gðncÞWbðncÞ ¼ xgWkðngÞWbðngÞ: ð27Þ
Furthermore, observe that for all n,
XNo

b¼0

ðvk
gÞbWbðnÞ ¼ Vk

gðnÞ; ð28Þ
since the basis is orthonormal. As a result,
ruf ðuÞvk
g

� �
a
¼
XNo

b¼0

XNo

c¼0

xcrUFðUPðncÞ; ncÞWaðncÞWbðncÞ
 !

ðvk
gÞb ¼

XNo

c¼0

xcrUFðUPðncÞ; ncÞWaðncÞ
XNo

b¼0

ðvk
gÞbWbðncÞ

 !

¼
XNo

c¼0

xcrUFðUPðncÞ; ncÞWaðncÞVk
gðncÞ ¼ xgWaðngÞrUFðUPðngÞ; ngÞWkðngÞ ¼ xgWaðngÞKkðngÞWkðngÞ

¼ KkðngÞðvk
gÞa: ð29Þ
Moreover, the eigenvectors defined by (25) form a complete basis of RmðNoþ1Þ. Indeed, let m(No + 1) reals (akg)k=1,. . .,m,g=0,. . .,No

be such that
P

k;gakgvk
g ¼ 0: This yields the stochastic vector

P
a
P

k;gakgðvk
gÞaWaðnÞ. Evaluating it at ng0 for any g0 = 0, . . . ,No,

we obtain
X
a

X
k;g

akgðvk
gÞaWaðng0 Þ ¼

X
k;g

akg

X
a
ðvk

gÞaWaðng0 Þ
 !

¼
X
k;g

akgVk
gðng0 Þ ¼ 0;
that is,
P

kakg0W
kðng0 Þ ¼ 0. Since for each g0, the stochastic eigenvectors Wkðng0 Þ form a complete basis of Rm, we infer akg0 ¼ 0

for all k = 1, . . . ,m. Since g0 is arbitrary, the proof is complete. h
Remark. Theorem 3 can be exploited when working with partial polynomial tensorization since the approximate eigen-
values only serve as data to compute a fitting polynomial. This point will be further discussed in Section 4.3 and illustrated
numerically in Section 5.2.3.
4. Numerical method

The Galerkin system (16) is discretized using a FV method [12,34]. Consider for simplicity a uniform spatial step Dx and
discrete times tn with time step Dtn = tn+1 � tn verifying a CFL condition specified below. The FV scheme takes the form
unþ1
i ¼ un

i �
Dtn

Dx
ðuðun

i ; u
n
iþ1Þ �uðun

i�1;u
n
i ÞÞ; ð30Þ
where un
i is an approximation to the mean value in space of the solution u in the cell of center iDx with width Dx at the time

tn and u(�, �) is the numerical flux. On a given interface LR separating left and right states indexed by L and R respectively, the
numerical flux is chosen in the form
uðuL;uRÞ ¼
f ðuLÞ þ f ðuRÞ

2
� a

uR � uL

2
; ð31Þ
where 1
2 ðf ðuLÞ þ f ðuRÞÞ is the centered part of the flux and a 2 RmðPþ1Þ;mðPþ1Þ is a (nonnegative) upwind matrix whose construc-

tion will be discussed in Section 4.3.

4.1. Roe matrix and Roe state

We assume that the original stochastic problem (4) possesses a Roe matrix ARoeðUL;UR; nÞ 2 Rm;m � L2ðN; pnÞ almost surely.
Recall that ARoe(UL,UR;n) verifies the following properties:

	 ARoe(UL,UR;n) is R-diagonalizable, 8UL;UR 2 AU � L2ðN; pnÞ.
	 Consistency with the stochastic Jacobian matrix rU F,
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ARoeðU;U; nÞ ¼ rUFðU; nÞ; 8U 2 AU � L2ðN;pnÞ:
	 Conservativity through shocks,
FðUR; nÞ � FðUL; nÞ ¼ ARoeðUL;UR; nÞðUR � ULÞ; 8UL;UR 2 AU � L2ðN;pnÞ:
Theorem 4. Consider either sparse or full polynomial tensorization for the stochastic space SNo;Nr. Under the above hypotheses,
8uL;uR 2 Au, the matrix aðuL; uRÞ 2 RmP;mP defined by
aðuL;uRÞ :¼ hARoeðUP
L ;U

P
R; �ÞWaWbia;b¼1;...;P ð32Þ
with UP
LðnÞ ¼

PP
a¼1ðuLÞaWaðnÞ and UP

RðnÞ ¼
PP

a¼1ðuRÞaWaðnÞ, verifies the following properties:

	 Consistency with the Galerkin Jacobian matrix ruf,
aðu;uÞ ¼ ruf ðuÞ; 8u 2 Au:
	 Conservativity through shocks,
f ðuRÞ � f ðuLÞ ¼ aðuL; uRÞðuR � uLÞ; 8uL;uR 2 Au:
Proof. To prove the consistency with the Galerkin Jacobian matrix, observe that 8u 2 Au, letting UP ¼
PP

a¼1uaWaðnÞ,
aðu;uÞ ¼ ðhARoeðUP;UP; �ÞWaWbiÞa;b¼1;...;P ¼ ðhrUFðUP; �ÞWaWbiÞa;b¼1;...;P ¼ ruf ðuÞ:
To prove the conservativity through shocks, observe that 8uL;uR 2 Au and "a = 1, . . .,P, letting UP
L ¼

PP
b¼1ðuLÞbWbðnÞ and

UP
R ¼

PP
b¼1ðuRÞbWbðnÞ,
ðf ðuRÞ � f ðuLÞÞa ¼ hðFðU
P
R; �Þ � FðUP

L ; �ÞÞWai ¼ hARoeðUP
L ;U

P
R; �ÞðUP

R � UP
LÞWai

¼ ARoeðUP
L ;U

P
R; �Þ

XP

b¼1

ðhWbUP
Ri � hWbUP

L iÞWaWb

* +
¼
XP

b¼1

hARoeðUP
L ;U

P
R; �ÞWaWbiðhWbUP

Ri � hWbUP
LiÞ

¼
XP

b¼1

ðaÞa;bððuRÞb � ðuLÞbÞ:
This completes the proof. h

Assume furthermore that for all UL;UR 2 AU � L2ðN; pnÞ, there exists a Roe state URoe
LR 2 AU � L2ðN; pnÞ almost surely such

that
ARoeðUL;UR; nÞ ¼ rUFðURoe
LR ; nÞ: ð33Þ
Then, for all UP
L ;U

P
R 2 AU � SP, introducing URoe

LR 2 AU � L2ðN; pnÞ such that ARoeðUP
L ;U

P
R; nÞ ¼ rUFðURoe

LR ; nÞ, we set
aRoe
LR :¼ aðuL;uRÞ :¼ hrUFðURoe

LR ; �ÞWaWbia;b¼1;...;P: ð34Þ
Moreover, if aRoe
LR is R-diagonalizable, this matrix is a Roe linearized matrix.

4.2. An efficient method for approximating the absolute value of a matrix

Let A be a deterministic R-diagonalizable matrix of size NA. The method presented here holds for a general matrix A; its
application to stochastic hyperbolic systems is detailed in Section 4.3. By definition, jAj is the co-diagonalizable matrix with A
whose eigenvalues are the absolute values of the eigenvalues of A,
jAj ¼
XNA

c¼1

jkcjlc � rc; ð35Þ
where fkcgc¼1;...;NA
are the real eigenvalues of A; flcgc¼1;...;NA

the left eigenvectors, and frcgc¼1;...;NA
the right eigenvectors. It is

possible to diagonalize A and to compute jAj using (35), but in practice this method is extremely costly. A more interesting
method has been proposed in [29], which consists in computing a sequence of polynomial iterations based on the exact
knowledge of the eigenvalues (or at last an explicit bound), and converging to the matrix sign if all the eigenvalues are real.
However, this method also becomes costly when NA grows. Another method has been proposed in [7], relying on the com-
putation of a polynomial which interpolates some absolute values of the eigenvalues of A. We derive here a new method
based on a single computation of a low-degree polynomial. Our method is clearly less costly, and it is also better adapted
to the situations where only approximations of the eigenvalues are known. Denote by fk0cgc¼1;...;NA

the approximate eigen-
values of A. The method consists in finding a polynomial qd;fk0g with degree d (d is fixed a priori) which minimizes the
least-squares error between jk0cj and qd;fk0gðk0cÞ, and then applying this polynomial to the matrix A in order to approximate jAj.
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Let qðXÞ ¼
Pd

j¼0cjX
j be a polynomial. We seek qd;fk0g which minimizes the error

PNA
c¼1ðjk

0
cj � qd;fk0gðk0cÞÞ

2. It is well-known
that this minimization problem is equivalent to solving a linear system with the polynomial coefficients (cj)j=0,� � �,d as un-
knowns. This system of size (d + 1) � (d + 1) can be written as
PNA

c¼1
k00c k00c . . .

PNA

c¼1
k00c k0dc

..

. . .
. ..

.

PNA

c¼1
k0dc k00c . . .

PNA

c¼1
k0dc k0dc

0
BBBBBBB@

1
CCCCCCCA

c0

..

.

cd

0
BB@

1
CCA ¼

PNA

c¼1
jk0cjk

00
c

..

.

PNA

c¼1
jk0cjk

0d
c

0
BBBBBBB@

1
CCCCCCCA
: ð36Þ
Solving this linear system yields the coefficients (cj)j=0,. . .,d that define the polynomial qd;fk0g. We then apply this polynomial to
A and obtain an approximation of jAj. For efficiency, Hörner’s method [33, p. 44] can be used: qd;fk0gðAÞ can be rewritten as
qd;fk0gðAÞ ¼ c0I þ ðc1I þ ðc2I þ � � � þ ðcd�1I þ cdAÞ � � �AÞAÞ: ð37Þ
The number of matrix–matrix products is thus reduced to d instead of d(d � 1)/2 if all the powers of the matrix were com-
puted independently. Therefore, the computational cost is proportional to d instead of being of order d2. We can further re-
duce the computational cost in the present case since we only evaluate the product of jAj times a given vector x. By
computing directly qd;fk0gðAÞx, the cost is reduced to d matrix–vector products instead of d matrix–matrix products.

4.3. The upwind scheme

We apply the method presented in the previous section to approximate the absolute value of aRoe
LR 2 RmP;mP at each inter-

face LR in the spatial domain. To this purpose, we assume to have at our disposal explicit expressions of the eigenvalues
K1(�;n), . . . ,Km(�;n) of the stochastic Jacobian matrix rUF and we evaluate these eigenvalues at URoe

LR ðnÞ and at the Gauss
points of each stochastic element. This yields the approximate eigenvalues fk0cgc¼1;...;mP. In other words, we use the eigen-
values of the matrix ruf identified in Theorem 3, although we stress that this matrix is never formed or evaluated. In the
case of full polynomial tensorization, the number of approximate and exact eigenvalues is the same. In the case of sparse
polynomial tensorization, there are more approximate eigenvalues than exact eigenvalues. The resulting fitting polynomial
is still expected to catch relatively well the exact eigenvalues. Indeed, because of localization on each stochastic element, the
eigenvalues are expected to be clustered around the eigenvalues of the stochastic Jacobian matrix rUF in each stochastic
element. We refer to the end of Section 5.2.3 for an example. Choosing a degree d then yields a polynomial qd;fk0g. The linear
system (36) can be singular if the number of distinct approximate eigenvalues is less than d. In particular, this occurs in the
deterministic case. To properly handle this issue, we use a Singular Value Decomposition method. Moreover, an important
point is that we exploit the diagonal block structure of the Galerkin Jacobian matrixruf by evaluating a fitting polynomial on
each stochastic element. The key advantage is that the polynomial has to fit less points, so that computations are at the same
time more efficient and more accurate. As a result, Eq. (38) below is applied separately on each stochastic element using a
specific polynomial.

The numerical flux in the Finite Volume scheme (30) is chosen in the form
uðuL;uRÞ ¼
f ðuLÞ þ f ðuRÞ

2
� qd;fk0gðaRoe

LR Þ
uR � uL

2
: ð38Þ
We emphasize that this flux is a numerical (upwind) flux associated with the Galerkin system (16), and not the projection of
a numerical flux associated with the original stochastic problem (4) as some methods discussed in the introduction propose.
Specifically, the constructed flux is not equivalent in general to the flux that would result from a non-intrusive projection
using deterministic Roe fluxes at some collocation or quadrature points. In the present method, some collocative information
is used to calculate the polynomial qd;fk0g, but this polynomial is applied to the Galerkin Jacobian matrix, so that we refer to
our method as intrusive.

Finally, the time step Dtn is selected from a CFL-condition based on the highest characteristic velocity over the spatial and
stochastic discretization cells. In practice, Dtn is computed such that
Dtn

Dx
¼ C

maxLR2I ;c¼1;...;mPjk0cj
; ð39Þ
where I denotes the set of interfaces LR and fk0cgc¼1;...;mP are the (deterministic) approximate eigenvalues identified above. In
other words, the maximum of the eigenvalues over the stochastic domain is evaluated by considering the eigenvalues at the
Gauss points of all the stochastic elements. In the sequel, we set the CFL constant C to 0.95.

We observe that the matrix qd;fk0gðaRoe
LR Þ is not guaranteed to control the eigenvalues of aRoe

LR (this matrix is not even guar-
anteed to be nonnegative). Indeed, approximate eigenvalues have been used to build qd;fk0g, and, in addition, this polynomial
only provides a least-squares fit to the eigenvalues. This issue can possibly be handled by tightening the stochastic resolution
or increasing the polynomial degree d; these aspects will be further explored numerically in the next section. Furthermore, it
is also possible to lower the CFL constant C as a safeguard in the case where the eigenvalues are underestimated.
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5. Results

The methodology presented in the previous sections is assessed on three test cases. The first two deal with the Burgers
equation and the third one with the Euler equations. Unless specified, full polynomial tensorization is used to span the sto-
chastic approximation space. Furthermore, it is well-known that Roe solvers need to be supplemented with an entropy cor-
rector to prevent non-entropic shocks across sonic points. The present test cases are designed so as to avoid this situation.
The extension of the present Roe solvers to include entropy correctors is possible. Details are reported elsewhere [35].

5.1. Test case 1: Burgers equation with positive wave speeds

The goal of this first test case is to assess the proposed methodology for a stochastic scalar conservation law (the Burgers
equation) so that the Galerkin system is guaranteed to be hyperbolic from Theorems 1 or 2, and involving only a positive
wave speed so that the computation of jaRoe

LR j is trivial.

5.1.1. Problem definition
We consider a one-dimensional spatial domain X = [0,1] with periodic boundary conditions. The governing equation, in

conservative form, is
@U
@t
þ @FðUÞ

@x
¼ 0; FðUÞ ¼ U2

2
; ð40Þ
and we consider an uncertain initial condition U0(x,n) consisting of three piecewise constant deterministic states in x. Spe-
cifically, the three states are u1 ¼ 1, u2 ¼ 1=2, and u3 ¼ 1=6, and the position of some jumps is uncertain: the jump from
states u1 to u2 occurs at a random location X1,2 having a uniform distribution in [0.1,0.2], while the jump from states u2

to u3 occurs at a random location X2,3 having a uniform distribution in [0.3,0.4]. Finally, the jump from states u3 to u1 is
at x31 = 0.6. The random locations X1,2 and X2,3 are independent and parameterized using two independent random variables
n1 and n2 respectively, both with uniform distribution in [0,1]:
X1;2 ¼ 0:1þ 0:1n1; X2;3 ¼ 0:3þ 0:1n2; n1; n2 
 U½0;1�: ð41Þ
Therefore, the problem has two stochastic dimensions (N = 2), and the dimension of the approximation space for expansion
order No and resolution level Nr is dimSNo;Nr ¼ ðNoþ 1Þ222Nr.

The initial condition is discretized on the spatial mesh by taking cell averaged random states as initial values. At the sto-
chastic level, the discretization uses piecewise continuous bilinear approximations over the 22Nr stochastic elements for
No P 1, or the stochastic element averaged state for No = 0. The bilinear approximation uses nodal interpolation at the ver-
tices at the stochastic elements, so that initial discrete states are continuous in the stochastic domain. This procedure pre-
vents the presence of overshoots in the initial data. However, no particular treatment is applied to enforce the stochastic
continuity during time integration. Fig. 1 provides an illustration of the random initial condition for a spatial discretization
with Nc = 200 uniform cells in the spatial domain. The plot shows a sample set of 20 realizations of the random initial con-
dition U0(x,n), with its expectation and standard deviation. It can be observed that the realizations present slightly inclined
shocks, an effect caused by the cell average procedure and which can be reduced by taking a finer spatial mesh.

5.1.2. Time integration
The stochastic Burgers equation is time-integrated using the Roe solver described above. We recall that since U is a scalar,

the Galerkin problem is hyperbolic. The evaluation of the stochastic expansion of the nonlinear flux F(U) relies on an exact
Galerkin projection using the third-order multiplication tensorMabd defined below by Eq. (55). Similarly, the Galerkin Jaco-
bian matrix is exactly evaluated using (17), that becomes ðruf ðuÞÞa;b¼1;...;P ¼

PP
d¼1udMabd

� �
a;b¼1;...;P

.
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Fig. 1. Random initial condition for test case 1: sample set of 20 random realizations, mean, and standard deviation.
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It is well-known that for the deterministic Burgers equation, the eigenvalue of the stochastic Jacobian matrix rUF is U.
Because in the present setting the initial condition is almost surely positive for any x, we expect U > 0 with probability
one, for all (x, t). Therefore, the spectrum of the Galerkin Jacobian matrix is expected to be strictly positive, so that the
upwinding matrix of the Galerkin problem reduces to the Galerkin Jacobian matrix (the polynomial transformation is in fact
the identity).

Fig. 2 shows the stochastic solution at times t = 0.2, 0.4, 0.6, and 0.8. The computation uses Nr = 3 and No = 3, so that the
dimension of the stochastic space is 42 � 82 = 1024. The solution expectation and standard deviation, together with a random
sample set of realizations, are also plotted. The realizations are reconstructed from the stochastic expansions of the solutions,
using a unique set of randomly generated realizations of n 2 [0,1]2.

Focusing first on the stochastic solution, we observe that the proposed method correctly captures the dynamics of the
Burgers equation. The shocks are transported with the correct velocity and the discontinuities remain sharp as time evolves.
For t = 0.2, the first shock whose velocity is 0.75 has not yet reached the second shock whose velocity is 1/3. At t = 0.4, a frac-
tion of the realizations corresponds to a situation where the first and second shocks have merged. At t = 0.6, the shocks have
merged for nearly all realizations, a situation which is fully achieved at t = 0.8. It can be observed that the realizations,
although corresponding to the same sample set of n in all plots, present a different distribution before and after the shocks
have merged. Indeed, since the merging happens at different times depending on the initial locations of the two shocks and
the shock velocities are different before and after merging, the location of the shock at later times is not expected to be
uniform.

The uncertain shock dynamics can also be analyzed from the standard deviations of the stochastic solution: not only the
maximum standard deviation is larger at t = 0.8, denoting the higher amplitude of the discontinuity, but the profiles are dif-
ferent. The expectation plots confirm the previous observations. While the uncertainty in shock location induces an affine
evolution of hUi with x when the two shocks are distinct, a variable slope of hUi with x is observed after the shocks have
merged: this indicates a non-uniform distribution of the shock location after merging. Similarly, the dynamics of the (deter-
ministic) rarefaction wave is well captured.

In addition to the analysis of the uncertain shock dynamics, Fig. 2 also demonstrates that the Roe solver for the Galerkin
system does not create spurious uncertainty in the solution, through numerical diffusion for instance. This can be better seen
from Fig. 3 where the space–time diagrams of the solution expectation and standard deviation are plotted over the larger
period of time t 2 [0,2]. For time t > 0.7, in a moving frame attached to the remaining shock, the standard deviation reaches
a maximum at t � 1 where it peaks at r(U) � 0.42, and then slowly decays. This decay is not a numerical artifact, but is in-
duced by the deterministic rarefaction wave which has grown up to occupy the whole domain, as seen from the expectation
plot where the plateau U = 1 has disappeared for t > 1.
Fig. 2. Solution of the stochastic Burgers equation at different times. The solution mean (red) and standard deviation (blue) are plotted as a function of x,
together with a reconstruction of 20 randomly generated realizations (green). Computations with Nr = 3 and No = 3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Space–time diagrams of the expectation (left) and standard deviation (right) of the stochastic Burgers solution. Contours are in the range [0,1] with a
constant spacing 0.05. Computations with Nr = 3 and No = 3.
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For analysis purpose, we define a moving observation point xo(t) = 0.25 + 0.5t. The observation point is initially located
between the two stochastic shocks. Since the velocity of xo is lower than 0.75, xo will be caught-up by the first random shock.
Moreover, since xo moves faster than the second shock, there is a time interval for which the stochastic solution at xo cor-
responds to a set of events n with different configurations of the shocks. This is seen from Fig. 4 where the stochastic solution
U(xo(t), t,n) is plotted as a function of n = (n1,n2) for various times t 2 [0.2,0.7]. For t = 0.2, the observation point starts to be
caught-up by some events corresponding to the largest realizations of X1,2: the solution is a function of n1 only. At t = 0.3, a
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Fig. 4. Stochastic solution of the Burgers equation at observation point xo(t) as a function of (n1,n2) and for different times as indicated. Computations with
No = 3 and Nr = 3.
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larger fraction (roughly 1/4) of the first shock has overrun the observation point, and the stochastic solution exhibits two
plateaus. At t = 0.4, the observation point starts to reach the second shock, introducing some dependence on n2, while a frac-
tion of events corresponds to shocks having merged. This creates a stochastic solution with three distinct plateaus with
respective values 1, 1/2, and 1/6, whose configuration evolves in time. At t = 0.7, the solution at the observation point is
essentially constant and equal to 1, with only a small fraction of events for which U = 1/6.

These results demonstrate the ability of the proposed method to account for nonlinear dynamics and complex interaction
between random shocks. However, plots in Fig. 4 deserve more comments. Firstly, although the numerical scheme allows for
discontinuities across the stochastic discretization cells, the solutions reported here appear essentially continuous. While the
initialization procedure ensures stochastic continuity of the initial condition, the numerical method maintains satisfactorily
this property as time advances, as expected from the properties of the Burgers equation, provided that the resolution is fine
enough. Secondly, the transitions between the states are smooth. This is due to the numerical diffusion of the Roe method
which is known to spread the shocks over a few spatial cells. The smoothness of the stochastic solution reflects this spatial
numerical diffusion. This point will be further evidenced below, where we show that the smooth transitions in the stochastic
domain have a characteristic thickness independent of the stochastic resolution. In addition, we can observe that the smooth
transitions are thicker along the second (n2) stochastic direction than along the first (n1). This is due to the different shock
velocities (effects of different local CFLs).
5.1.3. Convergence analysis
We present in Fig. 5 the stochastic solutions at the observation point x = 0.5 and time t = 0.5 for different stochastic

discretizations. The plots of the first line illustrate the convergence of the approximation with the expansion order No,
while those of the second line highlight the convergence with the resolution level Nr. It is seen that when the stochastic
discretization is too coarse, the solution exhibits significant discontinuities between stochastic discretization cells. More-
over, as claimed above, the transition thicknesses in the stochastic domain become independent of No and Nr as they
increase.
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Fig. 5. Stochastic solutions of the Burgers equation as a function of (n1,n2) at x = 0.5 and time t = 0.5 for different stochastic discretization parameters Nr and
No as indicated.
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5.2. Test case 2: Burgers equation with positive and negative wave speeds

The purpose of this test case is to assess the method still for the Burgers equation (so that the Galerkin system is guar-
anteed to be hyperbolic), but in a situation involving positive and negative wave speeds thereby requiring the calculation of
jaRoe

LR j as outlined in Sections 4.2 and 4.3.
-1
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 0
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 0  0.2  0.4  0.6  0.8  1

va
lu

e

x

SE realizations
<U(x,t=0)>
σ(U(x,t=0))

Fig. 6. Random initial condition for test case 2: sample set of 20 random realizations, mean, and standard deviation.

Fig. 7. Stochastic solution of the Burgers equation at different times. The solution mean (red) and standard deviation (blue) are plotted as a function of x,
together with a reconstruction of 20 randomly generated realizations of the solution (green). Computations with Nr = 3 and No = 3. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.2.1. Problem definition
We still consider the Burgers equation, but with stochastic initial condition U0(x,n) defined using two uncertain states,

U+(n1) and U�(n2), the first one almost surely positive and the second one almost surely negative. We take for x 2 [0,1],
Fig. 8.
and No
U0ðx; nÞ ¼
Uþðn1Þ; x < 1=3;
U�ðn2Þ; x > 2=3;
Uþðn1Þð2� 3xÞ þ U�ðn2Þð3x� 1Þ; 1=3 6 x 6 2=3;

8><
>: ð42Þ
such that U0(x,n) is continuous for any n 2 [0,1]2. We define the stochastic states as
Uþðn1Þ ¼ 1þ 0:1ð2n1 � 1Þ; n1 
 U½0;1� ! Uþ 
 U½0:9;1:1�;
U�ðn2Þ ¼ �1þ 0:05ð2n2 � 1Þ; n2 
 U½0;1� ! U� 
 U½�1:05;�0:95�;

ð43Þ
and we solve the stochastic Burgers equation with Dirichlet boundary conditions, U = U+ at x = 0 and U = U� at x = 1. The ini-
tial condition is illustrated in Fig. 6. Nc = 200 cells are used for the spatial discretization.

5.2.2. Time integration
Although initially continuous, the stochastic solution will develop in finite time a discontinuity with a stochastic jump

jU+ � U�j and a stochastic propagation velocity (U+ + U�)/2. The stochastic character of the shock magnitude and velocity
has to be contrasted with the situation of the previous test case, where the jumps and shock velocity were certain. This yields
a more complex situation as illustrated in Fig. 7 where the solution is plotted at different times for the stochastic discreti-
zation parameters No = 3 and Nr = 3 so that dimSNo;Nr ¼ 1024.

From the realizations in Fig. 7, we observe the appearance of overshoots which are related to the Gibbs phenomenon. We
emphasize that no instability occurs as time increases. In order to verify this assertion, we compare in Fig. 8 randomly gen-
erated realizations of the solution obtained by our method with realizations obtained by a non-intrusive projection method.
Specifically, we rely on tenzorized quadratures with N2

Q points on each stochastic element to compute the solution modes at
the selected analysis time. At each quadrature point, the stochastic solution is computed using a deterministic code also
based on a Roe solver. Since U is not a polynomial in n, the number of quadrature points cannot be selected a priori; for
all the results shown, we used NQ = 16, a value for which the quadratures are sufficiently accurate for all expansion orders
No and resolution levels Nr investigated. Note that the non-intrusive projection requires the resolution of a fairly large num-
ber (162 � 22Nr = 256 � 4Nr) of independent deterministic Burgers equations. We see that overshoots are also present for the
realizations of the stochastic expansion obtained by the non-intrusive method. Moreover, for both approaches, overshoots
can be reduced by increasing the stochastic resolution. In addition, we compare in Fig. 9 the maximum value of the stochastic
solution of the Burgers equation as a function of time for Nr = 4 and No = 3 using the present method and a non-intrusive
Reconstruction of 20 randomly generated realizations of the stochastic solution of the Burgers equation at t = 1.0 s. Computations with different Nr
using the present method (left) and a non-intrusive projection method (right).



Fig. 9. Maximum value of the stochastic solution of the Burgers equation as a function of time for Nr = 4 and No = 3 using the present method and a non-
intrusive projection method.
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projection method. We observe that the maximum value increases with time in both cases until reaching a plateau at time
t � 2.35. This again corroborates the stability of our method. Further test cases (omitted for brevity) show that the size of the
overshoots can be reduced by increasing Nr at No fixed or vice versa.

To get further insight, we present in Fig. 10 the evolution of the solution at a fixed point xo = 0.5 and different times. The
plots show the evolution from the initially smooth solution to a shocked solution with states U+ or U� according to the sign of
2(n1 � 1/2) � (n2 � 1/2). In addition, it is seen that overshoots occur only in a neighborhood of the discontinuity, namely in
stochastic elements containing the developing discontinuity. Using a finer stochastic discretization (increasing Nr) delays the
emergence of the overshoots and reduces the portion of the stochastic domain affected by them.
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Fig. 10. Stochastic solution of the Burgers equation as a function of (n1,n2) at x = 0.5 and different times as indicated. Computations with Nr = 3 and No = 3.
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5.2.3. Validation of the method used to evaluate the upwinding matrix
Another interesting property of the present test case is that contrary to the previous one, there exist spatial cells where

the solution U can take positive and negative values. As a result, the eigenvalues of aRoe
LR are no longer always positive, and the

polynomial q used to approximate the absolute value of aRoe
LR is no longer trivial as in the previous example. We then inves-

tigate the impact of the selected polynomial degree d of q on the computed solution. In the example presented previously, we
used polynomials with degree d = 3. In Fig. 11 we report the stochastic solution at x = 0.5 and t = 0.5 computed using increas-
ing polynomial degree d. It is seen that for d = 1, the solution exhibits spurious discontinuities and overshoots across the sto-
chastic discretization cells containing the developing shock (where the solution changes sign) meaning that the eigenvalues
of the upwinding matrix are not approximated with enough accuracy. When d = 2, the overshoots and discontinuities are
greatly reduced compared to the case d = 1. Increasing further d does not bring significant improvement in the solution.
In fact, at this stage the error in the solution is essentially dominated by the stochastic and spatial discretization errors,
whereby the error in the approximation of jaRoe

LR j for d > 3 is negligible.
To measure more precisely the error on the approximation of jaRoe

LR j, we compute the set of exact eigenvalues {ka}a=1,. . .,P of
aRoe

LR . We then compare the quantities jkajwith their respective polynomial approximation q(ka). The error is quantified using
the following quantities
Fig. 11
approxi
�2
2 ¼

1
P

XP

a¼1

ðjkaj � qðkaÞÞ2 and �1 ¼ max
16a6P

jjkaj � qðkaÞj: ð44Þ
We recall that the fitting polynomial q is actually different on each stochastic element. In Fig. 12 we present the error mea-
sures at t = 0.4 as a function of x. We first remark that the error is limited to the portion of the spatial domain where the
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stochastic shock can be present, and diminishes as d increases. Both error measures appear to stagnate when d increases
beyond 5 as can be expected since the estimated eigenvalues (at the tensorized Gauss points) used for the determination
of q are not the actual eigenvalues of aRoe

LR .
Finally, we have verified that the present procedure to compute approximate upwind matrices can be applied when

working with sparse polynomial tensorization. To this purpose, we have proceeded as described in Section 4.3. The profiles
of the stochastic solution as a function of (n1,n2) are similar to those reported in Fig. 10, indicating that the approximate up-
wind matrix is sufficient to yield stable computations.

5.2.4. Convergence of the stochastic error
We take advantage of this simple problem setting to investigate the convergence of the stochastic solution. Indeed, for

this Riemann problem, we can easily derive the exact solution U(x, t,n) for any given n, hereafter denoted Uex, as long as
the shock has not reached one of the domain boundaries [12]. We rely on a Monte-Carlo sampling strategy to estimate
the two first moments of Uex. We proceed as follows. Firstly, a random sample set of M realizations of n is generated by sam-
pling uniformly [0,1]2. Secondly, for each element n(i) of the sample set, we define u(i)(x,t) :¼ Uex(x, t,n(i)) for i = 1, . . . ,M. The
sample set estimate of the mean is
Fig. 13
corresp
comput
hUexiðx; tÞ � 1
M

XM

i¼1

uðiÞðx; tÞ ¼: EsðUexÞðx; tÞ; ð45Þ
while the sample set estimate of the standard deviation is
r2ðUexÞðx; tÞ � 1
M

XM

i¼1

ðuðiÞ � EsðUexÞÞ2ðx; tÞ ¼: r2
s ðU

exÞðx; tÞ: ð46Þ
To minimize the random sampling error in the empirical estimate, we use M = 100,000.
In Fig. 13, we compare the mean and standard deviation of the exact and computed solution for No = 2 and Nr = 4 at t = 0.6

on a mesh with Nc = 201 cells. It is seen that the means of the computed and exact solutions are in excellent agreement. For
the standard deviations, computed and exact solutions are in good agreement, although the computed solution slightly un-
der-estimates the standard deviation with less than 5% of relative error. The top panel of Fig. 14 presents the spatial distri-
bution of the error of the standard deviation for various resolution levels of the spatial grid and for fixed stochastic
discretization parameters No = 2 and Nr = 4. We observe that refining the spatial grid improves the accuracy. The bottom
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panel of Fig. 14 displays for No = 2 and various Nr the spatially integrated error defined as S2
h ¼ Dx

PNc
i¼1ðrðU

ex
i Þ � rðUP

i ÞÞ
2,

where the subscript i refers to the spatial discretization cell. The results show that except for the lowest stochastic resolution
level and the finest spatial grid, the error is dominated by the spatial discretization error.

To further analyze the stochastic convergence of the method, we monitor the convergence on a fixed spatial mesh with
Nc = 201. We consider the error measure
Fig. 15.
with Nc
�2
hðtÞ :¼ 1

M

XM

i¼1

Z
X
ðUNo;Nr

h ðx; t; nðiÞÞ � UMC
h ðx; t; n

ðiÞÞÞ2dx; ð47Þ
where UNo;Nr
h ðx; t; nðiÞÞ and UMC

h ðx; t; n
ðiÞÞ are evaluated for each element n(i) in a sample set from the stochastic expansion of the

computed solution and by solving the corresponding deterministic (discrete) Burgers problem respectively. We use a sample
set with cardinality M = 10,000. Fig. 15 reports the stochastic error �2

h at t = 0.6 and t = 1.8, as a function of the resolution level
Nr and for expansion orders No = 1, 2, and 3. In these simulations, the approximation of the upwind matrix uses a polynomial
degree defined as d = min(8, (No + 1)2). For both times, we observe a similar decay rate of the stochastic error as a function of
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resolution level. The errors are larger for longer times, since the shocks have expanded on a larger portion of the spatial
domain.

5.3. Test case 3: Euler equations

In this section, the method is tested on the stochastic Euler equations with one random parameter. The goal of this
test case is to assess the method on a nonlinear hyperbolic system of conservation laws, so that the obtained Galerkin
system is not guaranteed to be hyperbolic. We consider the one-dimensional Sod shock tube problem, where the flow of
an ideal gas is governed by the Euler equations. Conventional thermodynamic notation is used instead of the lower/
upper case convention adopted previously. The conserved quantities are the fluid density q, the impulse q = qv (with
v the velocity), and the total energy E = 1/2qv2 + qe, where the first term is the kinetic energy and the second one
the internal energy (per unit volume). The tube extends over one unit of length and is closed by two rigid walls at
x = 0 and x = 1. Boundary conditions are q = 0 and @q

@x ¼ @E
@x ¼ 0 at the solid walls. The discretization uses Nc = 250 cells

in the spatial domain.

5.3.1. Problem definition
We consider an uncertainty on the adiabatic coefficient c which is parametrized using a unique random variable n having

a uniform distribution in [0,1]. We consider a uniform probability distribution of c in the range [1.4,1.6], so that the param-
etrization is
cðnÞ ¼ 1:4þ 0:2n; n 
 U½0;1�: ð48Þ
Consistently with the notation introduced above, we set
Uðx; t; nÞ ¼ ðqðx; t; nÞ; qðx; t; nÞ; Eðx; t; nÞÞ 2 AU � L2ðN; pnÞ; ð49Þ
where AU � R3 is the set of admissible states such that the density and the pressure are positive, and
FðU; nÞ ¼ ðFqðU; nÞ; FqðU; nÞ; FEðU; nÞÞ ¼ ðqðnÞ; ðq2=qþ pÞðnÞ; ðvðEþ pÞÞðnÞÞ 2 R3 � L2ðN; pnÞ ð50Þ
with the pressure p given by the ideal gas law
pðq; q; EÞ ¼ ðc� 1Þ E� 1
2
qv2

� �
: ð51Þ
The initial conditions are
q0ðxÞ ¼
1; x 2 ½0;1=2�;
0:125; x 2 �1=2;1�;

�
v0ðxÞ ¼ 0 and p0ðxÞ ¼

1; x 2 ½0;1=2�;
0:125; x 2 �1=2;1�:

�
ð52Þ
5.3.2. Numerical solver
5.3.2.1. Computation of the Galerkin flux f ðuÞ 2 R3P. Let u ¼ ðqa; qa; EaÞa 2 R3P yielding the expansions qPðnÞ ¼

PP
a¼1qaWaðnÞ,

qPðnÞ ¼
PP

a¼1qaWaðnÞ, and EPðnÞ ¼
PP

a¼1EaWaðnÞ. Then, the Galerkin flux has components (fqa, fqa, fEa)a such that (fqa)a, (fqa)a,
and (fEa)a are the stochastic modes of the components Fq(UP;n), Fq(UP;n), and FE(UP;n) of the flux F(UP;n) with UP = (qP,qP,EP).

Contrary to approaches that compute the Galerkin flux in a non-intrusive way by quadrature formulae, we consider an
approximation of the Galerkin projection of the flux F(UP;n) on SP. Exact Galerkin projections of the stochastic Euler fluxes
can hardly be envisioned since they would result in unnecessary complex nonlinear operations. As motivated in [6], pseudo-
spectral computations allow for significant computational savings, while introducing negligible numerical errors as long as
the stochastic resolution is fine enough. Furthermore, proceeding step by step in the approximation of the nonlinear fluxes
yields intermediate quantities, such as kinetic energy and sound velocity, that can be re-used at different steps of the numer-
ical scheme, in particular when computing the Roe state.

Tools for accurate evaluations of polynomial and non-polynomial functions of variables represented by stochastic expan-
sions are described in [6]. Letting aðnÞ ¼

P
aaaWaðnÞ 2 SP and bðnÞ ¼

P
bbbWbðnÞ 2 SP, the product ab can be expanded as
ðabÞðnÞ ¼
XP

a¼1

aaWa

 ! XP

b¼1

bbWb

 !
¼
XP

a;b¼1

aabbWaWb: ð53Þ
Generally, ðabÞ R SP since this function possesses terms with degree >No. Its Galerkin projection on SP is given by
ða � bÞ :¼
XP

a¼1

ða � bÞaWa; ða � bÞa ¼
XP

b;d¼1

abbdMabd; ð54Þ
where we have introduced the third-order multiplication tensor
Mabd :¼ hWaWbWdi: ð55Þ
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This third-order tensor depends only on the stochastic basis, can be computed once and for all at the beginning of the sim-
ulation, and its sparse character in the stochastic space is exploited for its storage. The so-called Galerkin product (a � b) is
the building block for evaluating the projection on SP of more general nonlinearities. For instance, the Galerkin projection on
SP of 1/a, which we denote by a�*, and the Galerkin projection on SP of

ffiffiffi
a
p

, which we denote by a�=2, are obtained from the
resolution of the linear system a � a�� ¼ 1 and from the resolution with Newton’s method of the nonlinear system
a�=2 � a�=2 ¼ a, respectively. These problems can be solved independently in each stochastic element.

For the Euler equations, we define the components F�qðU
P; nÞ; F�qðU

P; nÞ, and F�EðU
P; nÞ of the stochastic flux F*(UP;n) as

follows:
Fi
F�qðU
P; �Þ ¼ qP; F�qðU

P; �Þ ¼ ðqP � qPÞ � ðqPÞ�� þ p�; F�EðU
P; �Þ ¼ v� � ðEP þ p�Þ; ð56Þ
where v* :¼ qP � (qP)�* and p* :¼ (c � 1) � (EP � (qP � qP) � (qP)�*
/2). We observe that F*(UP;n) is only an approximation of the

Galerkin projection of F(UP;n) since the composition of the elementary Galerkin operations (product, inversion) introduces a
so-called pseudo-spectral approximation. Consistently, the pseudo-spectral Galerkin flux is denoted by
f �ðuÞ ¼ ðf �a ðuÞÞa ¼ ðf �qa; f
�
qa; f

�
EaÞa; ð57Þ
where ðf �qaÞa; ðf �qaÞa, and ðf �EaÞa are the stochastic modes of F*(UP;n). All in all, the computation of the pseudo-spectral Galerkin
flux amounts to four Galerkin products and a Galerkin inversion.

5.3.2.2. Computation of the Galerkin Jacobian matrix. The pseudo-spectral Galerkin Jacobian matrixruf �ðuÞ 2 R3P;3P is given by
ruf �ðuÞ ¼
XP

d¼1

ðrUF�ðUP; �ÞÞdMabd

 !
ab

: ð58Þ
Introducing the enthalpy H* :¼ (EP + p*) � q�*, rUF*(UP; �) is defined as
rUF�ðUP; �Þ ¼
0 1 0

1=2ðc� 3Þ � ðv� � v�Þ �ðc� 3Þ � v� c� 1
1=2ðc� 1Þ � ðv� � ðv� � v�ÞÞ � v� � H� H� � ðc� 1Þ � ðv� � v�Þ c � v�

0
B@

1
CA: ð59Þ
In terms of computational costs, this approach requires nine Galerkin products and a Galerkin inversion owing, in particular,
to the re-use of the Galerkin product (v* � v*).

5.3.2.3. Computation of aRoe
LR and its absolute value. The Roe density, velocity, enthalpy, and corresponding sound velocity are

approximated on SP for a given interface LR as
qRoe;�
LR :¼ ðqP

LÞ
�=2 � ðqP

RÞ
�=2
; vRoe;�

LR :¼ ððqP
L Þ
�=2 � v�L þ ðqP

RÞ
�=2 � v�RÞ � ððqP

LÞ
�=2 þ ðqP

LÞ
�=2Þ��; ð60Þ

HRoe;�
LR :¼ ððqP

LÞ
�=2 � H�L þ ðqP

RÞ
�=2 � H�RÞ � ððqP

LÞ
�=2 þ ðqP

LÞ
�=2Þ��; ð61Þ

ðcRoe;�
LR Þ2 :¼ ðc� 1Þ � ðHRoe;�

LR � ðvRoe;�
LR � vRoe;�

LR Þ=2Þ: ð62Þ
This yields URoe;�
LR and the pseudo-spectral Roe matrix aRoe;�

LR is given by
aRoe;�
LR :¼

XP

d¼1

ðrUF�ðURoe;�
LR ; �ÞÞdMabd

 !
ab

: ð63Þ
g. 16. Space–time diagram of the deterministic density (left) and the expected density computed with parameters No = 2 and Nr = 3 (right).



Fig. 17. Space–time diagram of the standard deviations in the density for early (left) and longer times (right) computed with parameters No = 2 and Nr = 3.
Different color scales are used.
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Fig. 18. Reconstruction of the stochastic density q(x, t,n) at selected times.
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Finally, the absolute value of aRoe;�
LR is computed as described in Sections 4.2 and 4.3, using the approximation in SP of the

stochastic eigenvalues of rUF�ðURoe;�
LR ðnÞ; nÞ at Gauss points in each stochastic element, that is, ðv Roe;�

LR � cRoe;�
LR ÞðngÞg¼0;...;No

and vRoe;�
LR ðngÞg¼0;...;No.
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5.3.3. Results
In this section we present and analyze the results for the shock tube problem with uncertainty in the adiabatic coefficient.

We begin with a general analysis of the results, taking No = 2 and Nr = 3 as stochastic discretization parameters, so that the
dimension of the stochastic space is 24.

In the deterministic case and for the initial condition (52) for a certain realization of c(n), a shock wave generated at the
discontinuity travels to the right with velocity v + c, while a slower rarefaction fan travels to the left with velocity v � c, and a
contact discontinuity wave travels to the right with velocity v. When the waves reach the solid wall, they are reflected inside
the spatial domain and so propagate toward each other, merge, and interact. When the waves have crossed, they continue to
propagate up to the point where they again reflect on a wall, and so on.

Here, the uncertain sound velocity will affect the propagation velocity of the shock, contact discontinuity, and rarefaction
fan. Solutions for different realizations of c(n) exhibit similar patterns as in the deterministic case, but with different slopes
for the shock, contact discontinuity, and rarefaction fan in the space–time diagram. This is verified in Fig. 16 where the den-
sity in the deterministic case (with adiabatic coefficient set to hci) and its expectation in the stochastic case are plotted. The
spreading of the location of both the shock and the contact discontinuity when time increases is clearly visible, while for the
rarefaction fan, which is already smooth in the deterministic case, the impact of the uncertain sound velocity is less
pronounced.

The impact of the uncertainty can also be appreciated from the standard deviations of the density, reported in Fig. 17 for
early and longer times. The highest values of the standard deviations are observed along the path of the shock wave, the
maximum values corresponding to times at which the shock wave reflects on the tube walls. For early times (t 6 0.25),
uncertainty is present only in areas where the shocks can depend on the sound velocity in the prescribed uncertainty range.
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Fig. 19. Convergence of the stochastic density q(x, t,n) with No. Nr = 3, t = 6.5.
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The first process leading to larger uncertainty levels is the shock-wall interaction since the arrival of the shock at a wall
causes an abrupt increase of the density over a short time interval. The uncertainty in the arrival time of the shock therefore
induces a large variability in the solution. The second process leading to larger uncertainty levels is the interaction between
the uncertain shock, contact discontinuity, and rarefaction fan.

To assess the validity of the stochastic expansion, we show in Fig. 18 a reconstruction of the stochastic density q(x, t,n) at
selected times. The discontinuity in q(x, �,n) is initially in the x-direction. As time increases, the density becomes discontin-
uous in both x- and n-directions since the shock wave propagates with an uncertain velocity. In the (x,n)-plane, the discon-
tinuity becomes more and more oblique reflecting a monotone dependence of the shock velocity on n. For points (x,n) not too
close to the discontinuity, the solution is smooth and appears to be accurately approximated by the stochastic expansion. In
the neighborhood of the discontinuity, the solution exhibits small unphysical oscillations that are triggered by the well-
known Gibbs phenomenon so that the density takes values slightly outside its expected range. Such oscillations appear to
be caused by an unsufficient stochastic resolution and can be reduced by increasing the resolution level and/or the polyno-
mial order of the stochastic approximation. This is illustrated in Figs. 19 and 20, which show the convergence of the density
field as the value of No or Nr is increased. Oscillations become smaller as the level of stochastic resolution increases.

We define the error measure on the density as
�hðx; tÞ :¼ 1
M

XM

i¼1

ðqNo;Nr
h ðx; t; nðiÞÞ � qMC

h ðx; t; n
ðiÞÞÞ2

 !1=2

; ð64Þ
where qNo;Nr
h ðx; t; nðiÞÞ and qMC

h ðx; t; n
ðiÞÞ are evaluated for each element n(i) in a sample set from the stochastic expansion of the

computed solution and by solving the corresponding deterministic (discrete) Euler problem respectively. We use a sample
set with cardinality M = 10,000. Fig. 21 reports the error �h(x, t) for early and longer times using parameters Nc = 250, Nr = 3,
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Fig. 20. Convergence of the stochastic density q(x, t,n) with Nr. No = 1, t = 6.5.
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and No = 2. For early time, uncertainty has not propagated all over the spatial domain. We can distinguish three zones of
error corresponding to the neighborhoods of the three waves. We notice as expected that the error hits its maximum in
the neighborhood of the shock. As time increases, uncertainties propagate all over the domain. The zone of error correspond-
ing to the shock spreads and the discontinuity in the (x,n)-plane becomes more oblique. Furthermore, after several reflec-
tions of the waves on the walls (t = 6.5), the error remains small indicating that no instability occurs at longer times. In
Fig. 22, we examine the convergence of the error �h(x, t = 6.5) as the value of No or Nr is increased, confirming that both
parameters can be used to improve stochastic resolution.

To complete the discussion, we provide a brief estimate of the computational efficiency of the numerical method for the
Euler problem with random c. We show in Table 1 the evolution of the computational times for different stochastic discret-
izations. CPU times (TCPU) are reported for an integration of the Euler equations up to t = 3 on a fixed spatial grid with
Nc = 250 cells, and are normalized by the computational time using No = Nr = 0, i.e. for the deterministic problem. Since
the time step for the integration is based on a fixed CFL, it also depends on the stochastic discretization: the measured times
correspond to different numbers of iterations performed. However, we observed roughly 0.5% variability in the number of
time iterations between the most and least refined simulations; hence, CPU times can also be interpreted as times to perform
a fixed number of iterations.

Inspection of Table 1 shows a linear scaling with the number 2Nr of stochastic elements for fixed polynomial order No.
This scaling was expected and achieved owing to the decoupling of the Galerkin problems over the stochastic elements
for the projection on the SE basis. This linear scaling with respect to the number of stochastic elements is expected to hold
also for problems with higher stochastic dimension (N > 1); however, the overall CPU time increases significantly with N
owing to the exponentially growing dimension of the local stochastic basis (except for No = 0). For fixed resolution level
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1

ε h

x

No=0
No=1
No=2
No=3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ε h

x

Nr=1
Nr=2
Nr=3
Nr=4

Fig. 22. Stochastic error �h(x, t = 6.5) for various No and Nr. Computations with Nc = 250.

Table 1
Normalized computational times TCPU for different stochastic discretization parameters Nr and No.

Nr = 2 Nr = 3 Nr = 4

TCPU dimSNr;No TCPU dimSNr;No TCPU dimSNr;No

No = 0 4.0 (4) 8.1 (8) 16.1 (16)
No = 1 6.9 (8) 13.9 (16) 27.8 (32)
No = 2 11.8 (12) 23.2 (24) 46.5 (48)
No = 3 17.1 (16) 34.1 (32) 68.1 (64)
No = 4 24.8 (20) 49.3 (40) 98.0 (80)
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Nr, the scaling of TCPU with the dimension of SNo;Nr is roughly linear at least for No 6 4. There are two effects. Firstly, the spec-
tral evaluation of the nonlinearities in the flux and Roe’s states has a complexity (number of operations) that essentially
scales with the number of nonzero terms in the third-order multiplication tensorMabd, which itself increases exponentially
with No. Secondly, as No increases, a higher degree d has to be used for the polynomial approximation of the upwind ma-
trixes, resulting in higher computational costs. The second effect can be tempered, based on the numerical experiments on
the Burgers equation, by limiting d to a low value; the present simulations actually used d + 1 = min(9,3(No + 1)), since
allowing for higher degree d for No P 3 was found to have no significant effect on the solution. All in all, the complexity
of the nonlinearity resolution appears to be the most limiting factor of the present method, and this effect is expected to
be worse for problems with higher stochastic dimension N (see for instance [16]): this trend pleads for using stochastic
approximation spaces with low-degree polynomials for non-smooth stochastic problems.
6. Conclusion

In this paper we have investigated theoretically and numerically an intrusive Galerkin method for stochastic hyperbolic
systems of conservation laws, exhibiting discontinuities in both spatial and stochastic domains. The method is based on the
Galerkin projection of the original stochastic problem on a space of piecewise polynomials and uses a Roe-type solver with
upwind matrices that are efficiently computed by an original and fast method. Numerical tests on the stochastic Burgers and
Euler equations in one spatial dimension and, respectively, in two and one stochastic dimensions indicate that the method is
accurate and robust while maintaining moderate computational costs. Despite these improvements, Galerkin projection
methods remain expensive, especially to explore problems with higher stochastic dimensions. To reach their full potential,
Galerkin projection methods need further developments, in particular stochastic adaptivity. This is the focus of ongoing
efforts.
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